Development of Annual Low-flow Regional Regression Equations for Idaho

Jon Hortness
Hydraulic Engineer
USGS, Boise

Presentation Points

Background

Need for low-flow equations

Equation development procedures

Using regression equations today

Regression Equation Background

 Used to estimate streamflow statistics at ungaged locations

- Most common are the "Peak-flow" equations
 - Estimate magnitude of flood peaks at specific recurrence intervals

Status of Idaho Equations

- Monthly exceedance/annual mean equations (developed)
 - 20-, 50-, and 80-percent exceedances for each month and annual mean flow
 - Hortness and Berenbrock, 2001; USGS WRIR 01-4093
- Peak-flow equations (updated)
 - 2-, 5-,10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals
 - Berenbrock, 2002; USGS WRIR 02-4170

Status... - cont.

- Bankfull flow equations (developed)
 - 1.5- and 2.33-year recurrence intervals
 - Hortness and Berenbrock, 2003; USGS WRIR 03-4261

Annual Low-flow Equations

- Used for water quantity and/or water quality standards
 - River management planning
 - Permitting processes for withdrawals, transfers, or <u>effluent discharges</u>
 - Minimum thresholds for aquatic biota
 - Land-use planning and regulation

Why Now???

- Idaho TMDL's
 - Many TMDL's require streamflow data to calculate loads
 - Streamflow data is needed at locations where current data is not available
- Intermittent vs. Perennial Streams
 - Idaho Administrative Code,
 Water Quality Standards:
 Intermittent streamflow --- 7Q₂ < 0.1 ft³/s

Current Project

- Two-year study funded jointly by IDEQ and USGS
 - Develop the following annual low-flow regression equations:
 - $-7Q_1$
 - $-7Q_2$
 - $-7Q_{10}$
 - $-30Q_{5}$
 - Better determine locations of intermittent and perennial stream reaches

Development Process

Regionalization

- Divide state into regions
 - Try to define regions that are "hydrologically homogeneous"
 - Cluster analyses were performed on specific basin characteristics of gaged sites
 - Mean basin elevation
 - Basin slope
 - Percent forest cover
 - Mean annual precipitation

Regionalization - cont.

- Criteria for final region boundaries:
 - Cluster analyses
 - Geographic features (mountain ranges, breaks between mountains and plains, etc.)
 - Engineering judgment (general knowledge of areas)
 - *** This is a subjective process!!!
- Monthly exceedance/annual mean equations
 - 8 regions and 1 undefined area
- Peak-flow and bankfull equations
 - 9 regions and 1 undefined area

Regions

Monthly
 exceedance and
 annual mean
 flow equations

Figure 2. Location of regions used in regional regression analysis.

Regions

Peak-flow and bankfull equations

Figure 3. Locations of regions in Idaho used in regional regression analysis.

Gaging Station Data

- Streamflow statistics from active and discontinued gaging stations are used to develop the regression equations
 - Data from gages with 10 or more years of record on unregulated streams
 - 333 gages used in the peak-flow and bankfull flow analyses
 - 200 gages used in the monthly exceedance and mean annual flow analyses

Gaging Station Locations

Basin and Climatic Characteristics

- Obtained from digital data sources using GIS applications
 - Differ from previous investigations --- all basin and climatic characteristic data are computer generated and can be easily reproduced
 - No differing of estimates because two people calculate the same characteristic two different ways
 - Allows for use of characteristics that were previously very difficult or impossible to determine manually

Basin and Climatic Characteristics — cont.

- Characteristics used in the recently updated/developed equations
 - Drainage area
 - Mean basin elevation
 - Basin relief
 - Slopes > 30%
 - North-facing slopes > 30%

- Mean annual precipitation
- Forested area
- Basin slope
- Main channel slope
- List is almost endless
 - If the data are available, it's probably possible to use it

Regression Analyses

- Multiple linear regression techniques
 - Regress a specific streamflow statistic for all gages within a region vs. basin and climatic characteristics for the same gages
 - Use an OLS (Ordinary Least Squares)
 stepwise analyses to determine the best possible combination(s) of characteristics
 - The following regression statistics are useful in determining the "best" final equation
 - Student's t; Cook's D; Mallow's C_p; Adjusted R²; Press

Regression Analyses - cont.

- Use a GLS (Generalized Least Squares)
 technique, developed by USGS, to finalize the equations
 - Often reduces the prediction error because it weights the data from each gage based on record length and standard deviation of the data
- The final equation is not always the one that produces the smallest prediction errors
 - Number of variables (don't "over-fit" the data)
 - Ease of use
- Example equation: $Q_{100} = 0.0607 DA^{0.775} P^{1.96}$

Using Regression Equations in 2005

Use of digital datasets

 Computer generated basin and climatic characteristics (GIS-based)

More robust regression techniques

Using Regression Equations in 2005 – cont.

StreamStats

- Web-based, interactive map for using regression equations to estimate streamflow statistics
- Prototype version for Idaho (beta testing)
- Will be released to the public this year
- Hope to implement it nationwide as new equations are developed

Questions:

- Al Rea, Idaho District, USGS
- 387-1323; ahrea@usgs.gov

QUESTIONS???

Jon Hortness 387-1319 jehortne@usgs.gov

